- Adapting pre-trained model to specific tasks.
- Upates model weights
Requirements:
- Training data format: json – <prompt, completion>
- Hyperparameters:
Challenges:
- High Quality Data; Data Format
- Setting hyper parameters carefully
Parameter Tuning:
- Retrain all parameters
- Transfer Learning
- Parameter Efficient Fine-tuning (PEFT)
- Low-Rank Adaptation (LoRA): https://github.com/svpino/lora-vit/blob/main/lora.ipynb
- QLoRA: Efficient Finetuning of Quantized LLMs: https://github.com/artidoro/qlora
References: