Deutsch’s Algorithm

https://quantum.cloud.ibm.com/learning/en/courses/fundamentals-of-quantum-algorithms/quantum-query-algorithms/deutsch-algorithm
https://en.wikipedia.org/wiki/Deutsch%E2%80%93Jozsa_algorithm

Implementaion link: https://github.com/computingnotes/QuantumAlgorithmsUsingQiskit/blob/main/deutsch_algorithm_using_qiskit.ipynb
GitHub: https://github.com/computingnotes

deutsch_algorithm_using_qiskit (1)

Code Explanation:

Qiskit Code Explanation: Deutsch’s Algorithm

SectionCode Line(s)Description
Setup!pip install qiskit qiskit_aer pylatexenc -qInstalls necessary libraries: Qiskit, the Aer simulator, and LaTeX rendering tools.
from qiskit import ...Imports core Qiskit classes (QuantumCircuit), the simulator (AerSimulator), and visualization tools (display).
self.simulator = AerSimulator()Initializes the local high-performance simulator for execution.
create_oracledef create_oracle(self, case: int) -> ...Defines the method to generate the quantum oracle ($U_f$) circuit for the function $f$.
f = QuantumCircuit(2, name=f"Uf{case}")Creates the 2-qubit circuit (Qubit 0 = input, Qubit 1 = auxiliary).
if case in [2, 3]: f.cx(0, 1)Implements the balanced functions (f2, f3) by applying a CNOT gate.
if case in [3, 4]: f.x(1)Implements an output offset for functions where $f(1)=1$ (f3, f4) using an X-gate.
build_circuitdef build_circuit(self, oracle: QuantumCircuit) -> ...Defines the method that constructs the full Deutsch circuit.
qc = QuantumCircuit(n + 1, n)Creates 2 quantum qubits and 1 classical bit for the result.
qc.x(n); qc.h(range(n + 1))Preparation: Sets the auxiliary qubit to $
qc.compose(oracle, inplace=True)Query: Inserts the oracle ($U_f$). This is the single query that performs the Phase Kickback.
qc.h(range(n))Interference: Applies the final Hadamard gate to the input qubit (Qubit 0).
qc.measure(range(n), range(n))Measures the input qubit (Qubit 0). The result is ‘0’ if constant, ‘1’ if balanced.
rundef run(self, oracle: QuantumCircuit) -> Literal[...]Defines the execution method.
result = self.simulator.run(full_circuit, shots=1, ...).result()Runs the compiled circuit on the simulator exactly once.
if measurements[0] == "0": return "constant"Interpretation: If the measurement is ‘0’, the result of $f(0) \oplus f(1)$ is 0, meaning the function is constant.
else: return "balanced"If the measurement is ‘1’, the result of $f(0) \oplus f(1)$ is 1, meaning the function is balanced.
Executionsolver = DeutschSolver()Initializes the solver object.
for case, description in functions.items(): ...Loops through and tests all four required function cases (f1, f2, f3, f4).
display(full_f3_circuit.draw(output="mpl"))Generates and displays the visual diagram of the full quantum circuit for a specific case (f3 in the source).

Leave a Reply

Your email address will not be published. Required fields are marked *

error: